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A procedure based on energy stability arguments is presented as a method for 
extracting large-scale, coherent structures from fully turbulent shear flows. By means 
of two distinct averaging operators, the instantaneous flow field is decomposed 
into three components: a spatial mean, coherent field and random background 
fluctuations. The evolution equations for the coherent velocity, derived from the 
Navier-Stokes equations, are examined to determine the mode that maximizes the 
growth rate of volume-averaged coherent kinetic energy. Using a simple closure 
scheme to model the effects of the background turbulence, we find that the spatial form 
of the maximum energy growth modes compares well with the shape of the empirical 
eigenfunctions given by the proper orthogonal decomposition. The discrepancy 
between the eigenspectrum of the stability problem and the empirical eigenspectrum 
is explained by examining the role of the mean velocity field. A simple dynamic 
model which captures the energy exchange mechanisms between the different scales 
of motion is proposed. Analysis of this model shows that the modes which attain 
the maximum amplitude of coherent energy density in the model correspond to the 
empirical modes which possess the largest percentage of turbulent kinetic energy. 
The proposed method provides a means for extracting coherent structures which are 
similar to those produced by the proper orthogonal decomposition but which requires 
only modest statistical input. 

1. Introduction 
The existence of large-scale, coherent structures in turbulent shear flows is now 

widely accepted. Although much experimental effort has been directed towards 
identifying and categorizing such structures (see the reviews by Cantwell 1981 and 
Robinson 199 1 for references) the acquired knowledge of coherent structures has 
seen only limited direct use in modelling turbulence. This can be attributed, in 
part, to the lack of a universally agreed upon, unambiguous definition of coherence 
in a turbulent flow. The Proper Orthogonal Decomposition (POD), first applied 
to turbulence by Lumley (1967), provides a mathematically rigorous procedure for 
extracting the most energetic modes from a random field and a means by which the 
turbulent field can be modelled in terms of coherent structures. Aubry et al. (1988) 
projected the Navier-Stokes equations onto a set of basis functions given by the 
POD to produce a system of nonlinear ordinary differential equations governing the 

t Present address: IGPP, University of California, Los Alamos National Laboratory, Los 
Alamos, NM 87544 USA. 
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amplitudes of spatial structures in the near-wall region of the turbulent boundary 
layer. Numerical simulations of this low-order system of equations reproduced the 
sweeping and bursting phenomena seen experimentally. Recent work along similar 
lines (cf. Berkooz, Holmes & Lumley 1991; Aubrey & Sanghi 1990; Stone & Holmes 
1989) has shown the utility of the POD as a means of reducing complex turbulent 
dynamics to far simpler systems amenable to analysis by dynamical systems theory. 
In this way, it now seems that practical active control of turbulence may be possible 
(Berkooz 1992). 

Ideally, one would like to apply the same methodology to a wide range of flows 
where coherent structures are known to play an important role in the dynamics. 
The POD procedure, however, requires the two-point velocity autocorrelation tensor 
as input thus necessitating complete documentation of the flow before the analysis 
can proceed. For flows with very high Reynolds numbers or complicated geometries 
this can be prohibitively expensive given current computational and experimental 
capabilities. The purpose of the present work is to develop an analytic procedure for 
extracting basis functions (structures) which approximate those given by the POD 
but which requires much less a priori statistical information about the flow. 

The method presented is based on energy stability considerations put forth by 
Lumley (1971). First, the instantaneous flow field is decomposed into three com- 
ponents in order to isolate the large-scale structures. Evolution equations are then 
written for the coherent velocity field and the coherent kinetic energy. A procedure is 
formalized to search for the structures which maximize the instantaneous growth rate 
of coherent energy. The critical assumption is that the structures which on average 
have the largest growth rate of kinetic energy (the stability modes) will compare well 
with the structures which contribute the most to the average turbulent kinetic energy 
(POD eigenfunctions). 

The plan of the paper is as follows. The form of the decomposition and the 
derivation of the evolution equations for the large-scale fields are described in 92. Also, 
unknowns produced by the decomposition and subsequent averaging are examined. 
In 93 the maximization procedure is given and the governing eigenvalue relationship 
is derived. In 94 we propose two closure models and compare results with POD 
data derived from direct numerical simulations. The role of the mean velocity in the 
stability procedure is analysed in 95. Here we propose a dynamic model which allows 
the mean velocity to sense the presence of the large-scale structures. We argue that 
amplitude behaviour of the simple dynamic model should better compare with the 
POD eigenspectrum than the eigenspectrum of the stability problem. We show results 
that support this conjecture and summarize in 96. 

2. Derivation of the governing equations 
As an example we consider turbulent channel flow assumed statistically homoge- 

neous in both the downstream (XI) and cross-stream ( xg )  directions. In order to 
extract spatial structures from the total velocity field, we avoid traditional Reynolds 
averaging and instead decompose the instantaneous field into three components : the 
spatial mean (u), the coherent field ( u )  and the incoherent background turbulence 
(u'): 

Ui (X ,  t )  = V(x2) + Zli(X, t )  + ui'(x, t). (2.1) 



Large-scale structures 351 

The homogeneous directions allow us to define the mean using spatial averages: 

f(x,t) = - lL’ iL’ f(x, t)dxldx3. 
L1L3 0 

We introduce a second averaging procedure, denoted by ( . . . ), which eliminates the 
small-scale turbulence while leaving the coherent field intact : 

( ui(x, t) ) = U(X~)  + ui(xy t). (2.3) 

Practically this can be accomplished in several ways. If the structures are assumed 
to be rollers elongated in the streamwise direction and distributed periodically in 
x3 then phase averaging (Hussain & Reynolds 1972; Liu 1988) in this direction 
is appropriate. For more general configurations spectral estimates such as those 
proposed by Brereton & Kodal (1992) can be employed. For analytic purposes here, 
any properly defined, low-pass, spatial filter of the instantaneous field will serve. We 
require only that the two averages commute, 

( 7 )  = 7  

( u’u ) = u’u = 0 .  

and that the cross-correlations or Leonard stresses are negligible, 
- 

Given these averaging procedures, we can manipulate the Navier-Stokes equations 
to arrive at evolution equations for the coherent velocity field: 

Dvi/Dt + ~ j ~ i , j  = - ~ , i  + ~ ~ i , j j  + ~ i j , j  - Ui,j~j + (vivj),j, 
ui,i = 0. 

The coherent field depends upon the mean through the convective derivative 
D/Dt = a/at + Uja/axj and the mean velocity gradient Ui,j and also on the rectified 
effects of the incoherent small-scale turbulence represented by 

7.. = u“.- (U’.U’. ) . 
11 1 J r J  

This quantity can be thought of as a perturbed Reynolds stress which is unknown 
and will ultimately require modelling. In the limit of a completely random turbulence 
containing no structure (i.e. (... ) = 0) this quantity is equal to the usual Reynolds 
stress. In the case when the turbulence is completely structured so that (...) = my 
zij is identically zero. One could write evolution equations for zij but they would 
contain unknown higher-order moments of the unresolved velocities. 

The idea of triply decomposing the velocity field to shed light on the nature of 
large-scale turbulent motions is not new. In a series of papers (Hussain & Reynolds 
1970, 1972; Reynolds & Hussain 1972), Hussain and Reynolds introduced con- 
trolled wave disturbances into a fully turbulent shear flow. They derived equations 
for the wave component of the velocity field which are exactly analogous to those 
given above. These equations were then linearized about a mean turbulent state 
and the corresponding Orr-Sommerfeld-type relation was solved to find the fastest 
growing linear wave modes. In this context, the closure problem produced by the 
decomposition was addressed by using an eddy viscosity argument. Not surprisingly, 
Reynolds & Tiederman (1967) found that all physically realistic turbulent mean pro- 
files for the channel were stable in the sense of the linear theory. More recently, 
Butler & Farrell (1992~) used non-modal analysis to examine the same linearized 
problem. By examining the initial value problem thus avoiding the restriction to 
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exponentially growing wave forms, these workers found solutions with large alge- 
braic growth rates indicating a possibility for later secondary, nonlinear instability 
mechanisms. 

In free shear flows, Liu and co-workers have examined both the linear and nonlinear 
(in the sense of Stuart 1958) behaviour of controlled disturbances in the fully turbulent 
regime (cf. Liu & Merkine 1976; Alper & Liu 1977; Gatski & Liu 1979; Liu 
1988) In this case the (turbulent) mean profile is inflexional so that one can find 
infinitesimal disturbances with exponential growth rates. Using the ‘local linear’ 
theory to determine the shape of the disturbance field, an analytic framework (which 
we borrow from freely in later sections) for understanding the interactions between 
the mean flow energy, the coherent field energy and the background turbulence was 
developed. Extensive predictions of mean spreading rate and control by introduction 
of upstream disturbances were made. 

Our approach here is different in that we do not consider initially infinitesimal 
perturbations to a turbulent mean velocity profile. Since the reference state is 
fully turbulent, disturbances of finite amplitude are certainly present. The Reynolds 
stresses, the sole agency maintaining the mean velocity profile away from the laminar 
solution, are quadratic in the disturbance velocity. Therefore, realistic analysis of 
equation (2.4) must account for finite values of the disturbance velocity. To this end 
we sacrifice the instantaneous information provided by linear stability analysis and 
turn instead to nonlinear energy methods which allow consideration of perturbations 
of any size. 

3. Energy stability analysis 
Energy method analysis has a long history in the context of hydrodynamic stability 

(cf. Orr 1907; Serin 1959; Joseph 1966). Typically, the method is used to find the 
characteristic value of some parameter (Re, Ra) below which the flow is absolutely 
stable, i.e. disturbances of any amplitude decay in time. The equation for the time 
rate of change of the volume-averaged energy is written. A variational problem can 
then be defined for the maximum value of the parameter for which the energy growth 
is zero. Solution of this problem gives the critical value of the parameter and the 
velocity field corresponding to neutral global stability. 

In this work we use the energy method to ask a different question. If we allow for 
non-zero growth rates, we can find the coherent velocity field satisfying equation (2.4) 
that at any moment in time has the maximum energy growth rate. This velocity field 
is the mode that most efficiently extracts energy in a volume-averaged sense from 
the mean motion while minimizing energy loss to both viscous dissipation and the 
smaller-scale turbulence. We assume that this maximizing mode will be similar in 
shape to POD modes which (by definition) contribute the most to the time-averaged 
turbulent kinetic energy. 

This is exactly the idea put forth by Lumley (1971) and investigated by others 
(cf. Payne 1992) . The present work advances these ideas in several ways. First we 
give accurate numerical solutions to the resulting eigenvalue problem. By writing the 
equations in terms of the triple decomposition, the role of the induced stress terms is 
made clear. We show that the modelling of these terms is crucial and propose a model 
which gives excellent results. Finally, we are able to compare our results directly with 
the POD of a full numerical simulation. 

As a first step we define the volume-averaged coherent energy, E ,  and its growth 
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rate I as a functional of the coherent velocity field: 

}) vidV 
. (3.1) 

1 d E  
2E dt VividV S 

I(v;  Ui,j, V, Z) = -- = 

Without making any assumption about the magnitude of the perturbations, the 
nonlinear pressure and convection terms enclosed in braces can be eliminated using 
integration by parts, the continuity equation and the boundary conditions on the 
coherent field. Also, the mean velocity gradient, Ui,j, appears multiplying the tensor 
vivj so that only the symmetric part, Sij = ;(Ui,j + Uj,i), contributes to the integral. 
With these manipulations, the growth rate functional becomes 

We seek the solenoidal velocity field which maximizes A. Straightforward application 
of the calculus of variations gives the Euler equations for the maximizing u field in 
the form of an eigenvalue relation: 

where -.n now appears as a Lagrange multiplier due to the solenoidal constraint on 
the velocity field. 

Note that equation (3.3) is not the linearized disturbance equation of hydrodynamic 
stability theory. As shown clearly by Lumley (1971), equation (3.3) and the small 
disturbance limit of the Navier-Stokes equation cannot be satisfied simultaneously. 
In the linearized equations, where self-transport of energy is set identically to zero, 
the energy growth rate is required to be the same at all levels in the flow. Equation 
(3.3) specifies the global growth rate; locally this quantity may be greater or less, 
with nonlinear interactions transporting energy spatially as required. While these 
nonlinear terms are conservative and thus do not enter into the integral expressions 
used to arrive at the energy stability equation, it is important to note that the 
disturbances considered are not constrained to be small in any norm. This allows 
consideration of the stability (in an average sense) of a turbulent flow in which 
disturbances of finite size not only exist but determine the spatial structure of the 
mean profile. 

We consider coherent fields which are periodic in the homogeneous directions. 
This allows a decomposition into poloidal and torroidal components which satisfy 
continuity exactly (Joseph 1973): 

01 = Y),12 - v,3 v2 = -(Y),ll + Y),33) v3 = y,23 + v , 1 ~  

For velocity fields homogeneous in a single direction, the above decomposition 
reduces exactly to a velocity/streamfunction formulation. For a channel flow with 
streamwise invariance, v is simply the streamwise velocity component while y is the 
streamfunction in the ( ~ 2 , ~ 3 )  plane. 
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The two scalar functions are then expanded in normal modes in the streamwise 
and spanwise directions : 

y(x) = y(x2)ei(klxl+k3x3) 
~ ( x )  = u(x2)ei(klXI+k3x3) 

Substituting the above into equation (3.3) and eliminating the pressure 71 results in 
the following coupled two-point differential eigenvalue problem : 

ilv + iik3yU‘ - - v(D2 - k2)u - (Dz12 + ik3z13), 
(3.4) 1 il(D2 - k2)y + iik3uU’ = -ik1(2U’Dy - U”y)  + v(D2 - k2)2y 

+(D2 + k2)223 + &3D(733 - ~ 2 ) ,  

where D = a/ax2 , k2 = k: + kg. 
The boundary conditions on the coherent field are 

u = Dy = y = 0 at the walls. 

In order to proceed we need to specify a mean velocity profile and a model for the 
unknown stress terms. 

4. Closure models 
We have investigated two different closure models for the perturbation stress 

terms appearing in the eigenvalue relation. The stresses are truly unknowns in that 
their amplitude and structure have not been determined experimentally. Lacking the 
physical intuition that comes from experiment, we chose not to use the exact evolution 
equation for zij as a basis for our models. Instead, we resort to a combination of 
invariant modelling ideas (Lumley 1970) and our knowledge of the unperturbed 
Reynolds stress. 

Modulo the stress terms, equation (3.4) is linear in the coherent velocities. This 
linearity is an essential advantage of the extraction procedure and for this reason we 
constrain any stress model to be both linear and homogeneous in the u field and its 
spatial derivatives. While this seriously limits our choice of models, it ensures that 
the governing equation remains a regular eigenvalue problem. Further, the evolution 
equations for the stresses are invariant under uniform translations so the model 
should depend only on gradients of the coherent velocity. Tensorially this requires 

1 
z i j  - j z k k a i j  = r i j k l ( u k , l  + ul ,k ) .  

The nature of the averaging procedure implies that the scales of the coherent 
field and the background turbulence are different. Assuming that the background 
turbulence evolves on much shorter time and length scales than the structures, it 
seems plausible that a Newtonian stress-strain relation like that for the molecular 
stresses will provide the basis for a model. We set 

(4.1) zij - j z k k a i j  1 = V,(Vi,j  + U j , i ) .  

Owing to the inhomogeneity of the turbulence in the wall normal direction, we 
specify vt as a function of x2 corresponding to experimentally determined values of 
the traditional eddy viscosity. We will refer to this basic model as the isotropic eddy 
viscosity model. 

Using the basic stress model and an analytic expression for the fully turbulent mean 
profile (Phillips 1987) we have solved equation (3.4) numerically using Chebyshev 



Large-scale structures 355 

1 .o 

0.8 

2 0.6 

3 
5 

0.4 

0.2 

0.10 

0.08 

n 0.06 
2 

W 

0.04 
s 

0.02 

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 

x2 x2 

FIGURE 1. Model inputs: ( a )  mean velocity and mean gradient; ( b )  eddy viscosity 
and Reynolds stress. 

expansions and a packaged algorithm for generalized matrix eigenvalue problems. 
The mean velocity profile and the form of the eddy viscosity are shown in figure 1. 
Figure 2 shows comparisons between the calculated eigenvectors and the POD results 
of Moin & Moser (1989) obtained from a numerical channel flow data base. In all 
figures the wall normal coordinate has been normalized by the channel half-width. 
Since the equations are invariant under scalar multiplication, we have chosen to 
normalize the results so that the peak amplitudes of the stability functions and the 
POD functions are unity. 

In general, the stability results indicate that the most unstable modes (those with the 
largest volume-averaged energy growth rate) are streamwise vorticies in agreement 
with Butler & Farrell’s (19924 ‘globally optimal’ disturbances, POD analysis and 
observations of wall-bounded turbulent flows. Reynolds & Tiederman (1967), using 
the Orr-Sommerfeld equation, found turbulent mean profiles stable for all infinites- 
imal disturbances; the least-stable disturbance being streamwise propagating waves 
similar to laminar stability studies. This points again to the fundamental difference 
between equation (3.3) and the linearized stability equation. The presence of the full 
rate of strain tensor (Sij) in (3.3) implies that (in the parallel flow case) the vorticity 
and velocity disturbance equations are cross-coupled, excluding any type of Squire’s 
theorem for reducing the problem to two dimensions. This should be compared with 
the Orr-Sommerfeld formulation where the normal disturbance vorticity is uncoupled 
from the streamwise velocity (the so-called Squire mode). 

Although there are qualitative similarities in the shape of the stability-based struc- 
tures and the POD results, the modes predicted by the stability method fall off much 
more rapidly away from the wall than do the POD functions. The eigenvalue spectra 
(figure 3) clearly show the stability analysis favouring modes which have a much 
higher wavelength than the maximum energy modes of the POD. 

While there may be a number of reasons for this discrepancy, we choose to first 
examine more closely the closure model. Since both the POD analysis and the sta- 
bility method favour modes which are infinitely long in the streamwise direction, we 
rewrite equation (3.4) using the isotropic eddy viscosity model and setting kl  = 0 for 
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algebraic simplicity : 

(44 
All + kik3lpU’ = (V + vt)(D2 - k2)v - v,’Du, 

A(D2 - k2)y + iik3uU‘ = (V + vt)(D2 - k2)2y 
+vt”(D2 + k2)y + vt’(D2 - k2)Dy. 

The isotropic eddy viscosity stress model, when applied along with the poloidal ve- 
locity decomposition, produces equations for u and y which couple only through 
the action of the mean velocity gradient. For realistic turbulent profiles (see figure 
1) regions of appreciable mean shear are confined to thin boundary layers near the 
wall. Since, in the context of the eigenproblem, the coupling terms act like sources, 
the eigenfunctions computed using the isotropic model decay away from the wall as 
quickly as the imposed shear. 

From a closure prospective, the isotropic eddy viscosity formulation imposes several 
severe and possibly unphysical restrictions on the behaviour of the stresses. First, the 
scalar viscosity ensures that the principle axes of the stress tensor are aligned with 
the principle axes of the coherent rate of strain or, in terms of the linearized problem 
considered by Liu (1988), the stresses are phase locked with the rate of strain. When 
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the flow under consideration is independent of one direction (as is the case for the 
xl-independent modes in a channel), this implies that the stresses appearing in the 
equation for u1 are independent of the gradients of the other velocity components. 
However, it would appear that the coherent motions in the (x2,x3) plane which act to 
transport fluid across gradients of the mean velocity would contribute significantly to 
the zlj stresses. 

Secondly, in modelling the perturbed Reynolds stresses by an effective viscosity 
model, the coherent field plays the role normally occupied by the mean field in 
typical Reynolds stress closures. Unlike the mean velocity, the coherent field is fully 
three-dimensional with a large degree of streamline curvature. It can be shown 
(Pope 1975) that an isotropic viscosity eliminates any dependence of the stress on 
the mean rotation, limiting the usefulness of such a model in flows with curved 
streamlines. 

We now seek to develop a stress model that allows for some anisotropy in the eddy 
viscosity and thus couples the component equations through the stress terms. We 
begin with a standard second-order closure model for the true Reynolds stresses: 

D W  - = P . . + @ . . - & . .  
1J 1J 11 Dt (4.3) 

where includes contributions from both the coherent and small-scale turbulence 
(ui = ui + ui). The pressurestrain correlation is modelled by a return to isotropy term 
and an isotropization of production term (Naot, Shivit & Wolfshtein 1970), 

a,. I J -  - -?(m- T ' J  i a 8 i j )  - cZ(pij - i P k k 6 i j ) .  

The production and dissipation are given by 

&ij  = $66,. 
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We assume the stresses are in local equilibrium D w / D t  =. 0 and rewrite the 

(4.4) 

where the turbulent dissipation rate normally denoted by E is here denoted by € to 
avoid confusion with the gauge factor in the perturbation analysis. 

Following previous work by Elswick (1967),we set up a perturbation expansion in 
terms of mean field quantities taking the coherent field as an order-e perturbation 
to the spatial mean. We consider the zeroth-order Reynolds stress as known and 
look for a relationship between the order-s stress ( z i j )  and the order-e strain rate 
(s!~ = i<ui,j + ujk ) )  using equation(4.4); 

T U i U j  = ((1 - c2)pij + i C 2 p k k d i j )  - i ( 1  -c l )&dij  

uiuj = 4; + &&I. J + s 2 . .  . , 

We have neglected terms containing the mean gradient explicitly for several reasons. 
First, retaining such terms would lead to the appearance of U'R:, in the equation for 
R:*. Ultimately this term produces a model which is inhomogeneous in the coherent 
rate of strain thus violating our modelling philosophy. On physical grounds, we argue 
that the perturbed stress field is due entirely to the presence of the structures and as 
such we restrict the model to include only production due directly to coherent velocity 
gradients. This is in agreement with a cascade analogy for the complete flow. The 
coherent structures are fed energy directly by the mean gradients while the small-scale 
turbulence is in turn fed by gradients of the coherent field. The appearance of mean 
production terms at order E in the perturbation expansion is evidence of leaks in the 
cascade which we choose to ignore. This does not imply that we have completely 
neglected the production by the mean velocity, only that we have included it in a 
homogeneous manner. The off-diagonal terms in the viscosity tensor are exactly the 
modulated effect of mean production. 

If we identify the zeroth-order stresses with an eddy viscosity tensor, then the 
closure model can be written as 

z.. i j  - 3 l Z k k d i .  J - - - (v. tkuj,k + Vjkuik) (4.8) 
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where the tensor viscosity has the following structure in this specific case: 

v11 v12 0 
vij = vij(Ro) = ( V; 7 :2 ) * 

The off-diagonal contribution, 

T 0 
v12 = - (1 - c2) R,, 

c2 
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is simply the traditional Reynolds stress which is known experimentally (see figure 
1 b). 

Despite the absence of explicit mean production terms, this simple, linear model 
is still a major improvement over the isotropic eddy viscosity formulation. In the 
isotropic model the effects of the mean field have been neglected entirely. Here we 
have allowed for modulation of the perturbation stresses by the mean field through the 
zeroth-order stresses appearing in the production terms. Also we have unconstrained 
the model in an important way since the tensorial form of the eddy viscosity allows 
the principle axes of the stress tensor to be unaligned with the axes of the rate of 
strain. This is more realistic considering the three-dimensionality of the coherent field. 

Iv  + :ik3vU’ = (v + v22)(D2 - k2)v - v22’Dv 

Applying the model in equation (3.4) leads to 

(4.9) 1 +ik3(vi2Dy + 2v12D2y), 
R(D2 - k2)v + iik3vU‘ = +(v + v22)(D2 - k2yv 

+v22”(D2 + k2)v + v22’(D2 - k2)Dv 
+ik3((vr2 + ki)U + ~ 1 2 ~ ’ )  

with the expected cross-coupling of the equations through the stress model. 
Figure 4 shows eigensolutions to equation (4.9) for several values of k3. The results 

compare well with the POD eigenvalues especially for wavenumbers at or below 
the peak in the POD spectrum. The improvement with decreasing wavenumber is 
expected given the modelling considerations. The separation of scales between the 
background turbulence and the coherent structures increases as the wavenumber 
decreases adding to the expected accuracy of the stress model. The comparison of the 
two models indicates significant improvements in the results given by the anisotropic 
eddy viscosity form. The energy method procedure with the more refined closure 
model appears capable of extracting structures which closely approximate those given 
by the POD at least at the energy-containing scales of motion. 

5. Role of the mean profile 
The POD provides a basis set which is ordered in an energy sense. The eigenvalues 

provide a measure of the kinetic energy in the corresponding eigenfunction. This or- 
dering is an essential advantage of the POD method since it allows one to intelligently 
select a small number of basis functions with which to represent the motion while 
ensuring that the energetics of the flow are adequately accounted for. We would like 
our stability-based extraction method to possess a similar ordering property. From 
figure 3, it is evident that the eigenspectrum produced by solutions of equation (3.4), 
while improved by the use of the anisotropic closure model, still predicts structures 
with maximum growth rate that is a factor of 2 smaller than those containing the 
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most energy as given by the POD. At this point we consider the role of the mean 
velocity in the two methods. 

The POD structures are derived from solutions to the nonlinear Navier-Stokes 
equations which allow for complicated interaction between the different scales of 
motion. The structures evolve in a local mean field that is changing in response to the 
organized motion. Conditionally averaged mean profiles from Blackwelder & Kaplan 
(1976) clearly show the evolution of the local shear in the presence of coherent 
structures. In the relatively long period between ‘bursting’ events, the structures erode 
the mean shear in which they are embedded. 

The stability method on the other hand does not allow for any interaction between 
the mean and the coherent field. The mean flow is imposed and the resulting structures 
are calculated. The mean profiles used are time averages which mask any contribution 
from the coherent field. As such the stability analysis predicts that the highest growth 
modes are those which can best extract energy from the time-averaged mean shear 
which is concentrated in the small near-wall region (see figure 1 ). Since the structures 
have an aspect ratio close to one, the narrow region of high imposed shear leads to 
a peak in the eigenspectrum at a large spanwise wavenumber. 
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We seek a way of relating the POD spectra to the energy stability analysis to 
arrive at an ordering criterion for the stability eigenfunctions. To do this we follow 
Liu and co-workers (see Liu 1988 for a complete list of references) and write time 
evolution equations for the energy density of the coherent field. In this way energy 
exchanges between the large-scale motions, the small-scale motion and the local 
mean (modelled with explicit dependence on the coherent velocity) are examined. 
This is essentially Stuart’s (1958) nonlinear stability theory extended to turbulent flow 
using eigenfunctions derived via the energy method. We expect that the amplitude 
behaviour of the coherent energy density as a function of cross-stream wavenumber 
will approximate the average energy content as given by the POD spectrum. At any 
given time, the true turbulent field is made up of a collection of coherent structures 
each at a different stage of growth or decay. The time average of the amplitude of 
a single structure taken over the course of its lifetime is equivalent to the average 
amplitude of the ensemble of similar structures. By examining the time evolution of a 
single structure which interacts with the local mean in a physically realistic manner, 
we can determine the contribution such a structure makes to the ensemble-averaged 
coherent energy. It seems plausible that the time-averaged energy, as given by the 
POD spectrum, will be dominated by contributions from structures with the largest 
ensemble-averaged amplitude. 

The exact volume-averaged evolution equations for the coherent and turbulent 
energies are 

The coherent field is given by the eigenfunctions of the stability problem which now 
vary in time. Generally, vi(x,t) = A(t)c$i(x) where the c$ denote the time-independent 
eigenfunctions of the stability problem. Specifically, 

v1(x, t )  = A(t) (~ a2y - -) a v  , 
ax,axz ax3 

v&,t) = -A(t) (2% axlax, +A), ax3ax3 

V3(X,t) = A(t) ( - a2w +”) 
a X 3 a X 2  ax, 

Similarly, we fix the spatial shape of the background turbulence while allowing its 
magnitude to adjust with the coherent and mean fields: 

ui~jdxldx2 = E(t)Bij(Xz). J J  (5.3) 

The time dependence of the background stress can be inferred from its evolution 
equation: 
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This leads to 
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~i j (x ,  t) = A(t)E(t)Rij(x) (5.5) 
where the anisotropic eddy viscosity model is used to fix the spatial form of the 
perturbation stresses : 

For the mean profile we adopt a variation of the 'quasi- steady' model used 
in Aubrey et al. (1988). The equation for the mean profile in a channel can be 
simplified substantially owing to the homogeneity in the streamwise and cross-stream 
directions : 

The background turbulence is assumed to be in local equilibrium with the mean 
flow and we concentrate on changes in the mean due to the presence of the or- 
ganized motions. Using this and equation (5.3) the evolving mean profile is given 
by 

U(X2, t) = U(X2) + - A2(t) 1'' 4142dX12. 
V 

This allows the mean to respond to growing structures providing the necessary feed- 
back to the evolving modes. 

Substituting these representations into the energy equations results in a set of 
coupled ODES for the temporal evolution of the energies: 

dA2 
- = A2 (Il(k) - A212(k) - E13) , 1 
dt 
dE 
- = A2E13(k). 
dt I 

Again, we have assumed local equilibrium of the background turbulence and the mean 
velocity by setting mean production of background energy equal to the dissipation. 
The wavenumber-dependent interaction integrals are given by 

1 1  =-  U'$142dV, 

1 2  = I ($1&)2dv, 

Numerical values of the interaction integrals are given in table 1 and the corre- 
sponding temporal evolutions of the coherent energy density, A2, as given by equation 
(5.9) are shown in figure 5. 

Physically, smaller modes given by higher wavenumbers are better able to extract 
energy from the fixed spatial mean but they lose energy faster to the background tur- 
bulence. Also, the smaller modes which have large growth rates initially (as predicted 
by the stability analysis or the quantity 1 2 )  interact strongly with the mean reducing 
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FIGURE 5. Temporal evolution of coherent energy density for parameter values corresponding to 

different wavenumbers. 

k3 11 1 2  1 3  
2.5 0.66 2.47 0.508 
4.0 2.15 5.33 0.208 
5.0 2.99 7.05 0.241 
6.0 3.82 8.66 0.425 
7.5 4.55 11.0 0.826 

10.0 6.76 15.6 1.34 
12.5 8.46 20.6 1.71 
15.0 10.0 25.6 1.99 
20.0 12.8 34.8 2.37 
30.0 7.93 47.4 2.05 

TABLE 1. Interaction integrals for various wavenumbers 

the shear locally. Lower-wavenumber modes are less affected by nonlinear interac- 
tion with the mean but grow so slowly that constant energy loss to the background 
turbulence over time limits their maximum amplitude. Figure 5 indicates that there 
exists a mode shape corresponding to an intermediate wavenumber which grows to 
a maximal amplitude before decaying. 

In order to quantify comparisons of the single-mode evolution model given by 
equation (5.9) and the POD eigenspectrum, we define an average of the lifetime of 
an individual structure. Taking A2(t i )  = A2(tf) where ti is the initial time and tf is the 
final time we designate 

1 r f f  I ’  
(...} = T J  ... dt 

ti 

(5.10) 

where T = tf - ti . 
Comparison between {A’}  (k3) and the spectrum of the POD is shown in figure 6. 

The single-mode model, while not capturing the shape of the POD spectrum exactly, 
gives a good indication of which wavenumbers are the most energetic. The discrepancy 
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FIGURE 6. Comparison of ensemble-averaged energy content with POD spectrum. 

at high wavenumber is not surprising when we consider the simplifications involved 
in the model. Equation (5.9) describes only the interaction of single mode with the 
local mean and the background turbulence. The effects of interactions between modes 
may be negligible for large-scale structures but must become important for smaller 
scales. Small-scale eddies will see a local shear given not only by the mean field 
but also by the larger eddies in which they are embedded. Evidence for a dramatic 
reduction in the ensemble kinetic energy of the smaller scales due to the presence of 
larger eddies is shown in the Appendix. 

6. Conclusions 
A method based on nonlinear stability considerations has been presented as a 

means by which large-scale, energy-containing structures can be extracted from fully 
turbulent shear flows. After defining two averaging operators and decomposing the 
instantaneous velocity and pressure fields into the spatial mean, coherent fluctua- 
tions and incoherent background turbulence, the evolution equations for the coherent 
fields were derived. Energy stability analysis of these equations leads to an eigenvalue 
problem which determines the velocity field that, at any moment in time, maximizes 
the volume-averaged growth rate of coherent kinetic energy. The form of the maxi- 
mizing velocity fields was compared with numerical results of the proper orthogonal 
decomposition (POD) of a turbulent channel flow. 

The decomposition and averaging result in equations which are unclosed; the recti- 
fied effects of the background fluctuations appear in the form of a perturbed Reynolds 
stress. A model for these unknowns, based on second-order closure techniques, was 
derived by perturbation expansion about the mean velocity and Reynolds stress. This 
led to an anisotropic eddy viscosity which is a function of the unperturbed Reynolds 
stresses. The eigenfunctions produced by this model compare very well with the POD 
results for a range of spanwise wavenumbers. 

While we cannot guarantee the validity of the stress model in any given flow, 
preliminary results, using only a simple isotropic viscosity, for the case of sheared 
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convection (Poje 1993) are quite promising. Comparison of the stability-based func- 
tions to second-order statistics given by a resolved numerical simulation shows 
excellent similarity. As is the situation for all known turbulence models, the closure 
used here for the perturbed Reynolds stress must be considered on a case by case 
basis for different flow configurations. Such investigations are the subject of future 
work. 

Although the spatial form of POD results were well predicted by the stability 
structures using the anisotropic closure model, the eigen-spectrum of the stability 
analysis did not compare well with the POD eigenspectrum. The mode which 
maximizes the volume-averaged growth rate of coherent energy occurs at a spanwise 
wavenumber approximately three times larger than that corresponding to the mode 
containing the largest time-averaged turbulent kinetic energy as predicted by the 
POD. To explain this discrepancy the role of the mean velocity profile in the two 
extraction procedures was examined. 

The POD procedure is based on solutions of an integral eigenvalue problem where 
the kernel of the integral operator is the time-averaged, two-point, spatial velocity 
correlation tensor. Thus, the POD results contain information from the nonlinear 
Navier-Stokes equations which allow for interaction between the coherent velocity 
and the mean field. The stability procedure itself cannot account for any dynamic 
interaction between scales since the mean velocity is imposed at the outset and 
the resulting structures are then calculated. To examine the physics of interactions 
between the disparate scales of motion at the same level of complexity as the stability 
procedure itself, dynamic equations for the evolution of volume-averaged coherent 
and background turbulent energies were derived. The mean profile was allowed to 
evolve with the coherent energy based on a model consistent with the mean velocity 
equation for channel flow. 

The coefficients in the evolution equations depend upon integrals of the stability 
functions and thus on the spanwise wavenumber of the modes. High-wavenumber 
modes had the largest initial growth as predicted by the eigenvalue of the stability 
problem. However, the instantaneous growth rate of these modes was reduced 
quickly due to their strong interaction with the mean profile. The small length scales 
associated with high wavenumbers lead to fast dissipation to the background field. 
Large-scale, low-wavenumber modes did not interact strongly with the mean field 
but had such small initial growth rates that energy loss to the background turbulence 
inhibited the maximum-amplitude achieved. It was found that modes corresponding to 
intermediate wavenumbers (k3 = 7.5) grow to the largest amplitude. These maximum 
amplitude structures compare very well with the POD eigenfunctions containing the 
most time-averaged kinetic energy. 

In order to study the dynamics of coherent structures which exist in a turbulent 
flow we require a means by which the organized part of the flow can be extracted 
from the random fluctuations. The energy-stability-based procedure proposed here 
provides an extraction method that stems from the Navier-Stokes equations. The 
results compare well with those given by the proper orthogonal decomposition but 
require substantially less a priori statistical information about the flow. By reducing 
the initial experimental or numerical costs we hope to use this procedure as first step 
in examining the dynamics of coherent structures in flows that until now have not 
been amenable to the proper orthogonal decomposition. 

This work was supported primarily by the AFOSR under contract F4960-92-5-0287 
(Wall Layers). 
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Appendix 
In order to estimate the effects of larger-scale motions on the evolution of the 

smaller scales, we examine the interaction between a fundamental wave disturbance 
(small scale) and its subharmonic (large scale). The coherent field is then made up 
of two components, ui = Ci + Oi where the fundamental, 8, is periodic in x3 with 
wavelength i1/2 and the subharmonic, 6, has wavelength 1. 

Since the periods of the disturbances have been artificially prescribed, two phase 
averages can be defined to decompose the velocity field analytically: 

A. C.  Poje and J.  L. Lumley 

In this way, the coherent contribution from the instantaneous velocity is given by 

( 0 )  =U+8+5, 

( ( ; + a ) )  =8.  

and the fundamental can be separated from the subharmonic using the ( ( ) )  average: 

The volume-averaged kinetic energy equations for the two components of the 
coherent field are 

(oiGi)dT/ = - J (cifij2 -cigi- aai 
dt axj 

As before, the coherent velocities are taken as the eigenfunctions of the stability 
problem, 

ai = Al(t)&(X), 6i = Al(t)&(X) 

and the mean velocity model now contains contributions from both the fundamental 
and the subharmonic, 

- = U' + (01 + 61) (82 + 62) 
au 
ax2 

New coupling terms appear in the evolution equations for the coherent energy 
densities due to interaction between the different size modes : 

I:' and I:1 represent the effect on the mean shear production of fundamental (sub- 
harmonic) coherent energy due to the presence of the subharmonic (fundamental). 1 4  
is a measure of the direct energy transfer between the two modes due to the working 
of the subharmonic stresses against the fundamental rate of strain. This quantity 
appears with opposite sign in each equation. 
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FIGURE 7. Temporal evolution of coherent energy densities showing the effect of 

mode-mode interaction. 

As an example, we have calculated the the interaction integrals using the mode 
k3 = 20.0 as the fundamental. For this case, 

The results of integrating equation (A5) for these coefficient values are shown in 
figure 7. The mode-mode dynamics are dominated by terms due to the mean velocity 
feedback model. The direct interaction term, 14 ,  is much smaller. The effect of the 
large-scale subharmonic on the behaviour of the small-scale fundamental is dramatic. 
Although Iil is twice as large as I;*, the slowly growing subharmonic mode is prac- 
tically unaffected by the presence of the fundamental. The fundamental, however, is 
quickly damped by the larger-scale motion. This agrees with our intuitive picture of 
the physics. The small-scale motions see not only the mean shear but the strain rate 
due to all larger scales. 

While the situation analyzed here is admittedly artificial since a real turbulent flow 
will contain structures of all sizes at any given instant, there is no reason not to expect 
a qualitatively similar effect on the smaller-scale motions in the real flow. Since the 
larger eddies are relatively unaffected by the smaller scales, the arguments presented 
in $5 and the small-wavenumber results shown in figure 6 will carry over to the case 
of many interacting eddies. The spuriously slow fall off in the spectrum of {A2} ,  
however, would be eliminated. 
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